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Abstract

As the world shifts towards cleaner energy, the integration of renewable energy sources
(RES) poses new challenges for grid stability due to its variable nature. This increased
dependence on RES has led to the concept of grid flexibility as a means to maintain
equilibrium between supply and demand. Electric Vehicle (EV) charging stations of-
fer a promising avenue to enhance grid flexibility by dynamically adjusting their energy
consumption. However, most existing literature focuses on optimizing EV charging to
minimize costs rather than maximizing flexibility.

This thesis proposes a reinforcement learning (RL)-based framework to optimize EV
charging stations, emphasizing the role of flexibility. By incorporating flexibility into the
EV charging model, various RL methods are trained and evaluated using a customized
simulation environment. This simulator, built on top of EV2Gym, has been enhanced to
include economical rewards when providing flexibility. The performance of the selected
RL solutions is compared with Model Predictive Control (MPC) approaches, focusing on
cost minimization and flexibility maximization.

The results demonstrate that RL agents can achieve a balance between economic viability
and enhanced flexibility, although cannot outperform MPC when forecasted data about
EV arrival and electricity prices are completely accurate. These findings indicate that
RL may offer a viable alternative for managing EV charging stations when the forecast
of said data is uncertain or not available.

Keywords: Reinforcement Learning, Electric Vehicle, Charging Stations, Grid
Flexibility





Abstract in lingua italiana

Con il passaggio globale verso un’energia più pulita, l’integrazione delle fonti di energia
rinnovabile introduce nuove sfide per la stabilità della rete a causa della loro natura
variabile. Questa dipendenza dalle fonti rinnovabile ha messo in evidenza la necessità
di flessibilità della rete per mantenere un equilibrio tra domanda e offerta. Le stazioni
di ricarica per veicoli elettrici (EV) rappresentano una promettente soluzione al fine di
migliorare la flessibilità della rete, regolando dinamicamente il loro consumo energetico.
Tuttavia, gli studi esistente si concentrano principalmente sull’ottimizzazione della ricarica
dei veicoli elettrici per ridurre i costi, piuttosto che massimizzare la flessibilità.

Questa tesi propone un framework basato sull’apprendimento per rinforzo (RL) per ot-
timizzare le stazioni di ricarica per EV, con un’enfasi sulla flessibilità. Incorporando
la flessibilità nel modello di ricarica EV, sono stati allenati e valutati diversi metodi di
RL tramite un ambiente di simulazione personalizzato. Questo simulatore, basato su
EV2Gym, è stato migliorato per includere ricompense economiche per la fornitura di
flessibilità. Le soluzioni RL selezionate sono state confrontate con approcci di Model
Predictive Control (MPC), concentrandosi sia sulla riduzione dei costi sia sulla massimiz-
zazione della flessibilità.

I risultati dimostrano che gli agenti RL possono bilanciare la redditività economica con
una maggiore flessibilità; tuttavia, non superano l’MPC quando sono disponibili previ-
sioni precise sugli arrivi degli EV e sui prezzi dell’energia. Questi risultati suggeriscono
che l’RL offre un’alternativa valida per la gestione delle stazioni di ricarica EV in scenari
in cui le previsioni dei dati siano incerte o non disponibili.
Parole chiave: Apprendimento per Rinforzo, Veicoli Elettrici, Stazioni di Ri-
carica, Flessibilità della Rete.
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1| Introduction

As an effort to minimize the impact of global warming, electricity generation is increas-
ingly shifting from fossil fuel power plants to renewable energy sources (RES) such as
wind, solar and hydropower [1]. While these sources provide a cleaner and more sustain-
able solution, they suffer from a main drawback intrinsic to their nature. Which is that
power generated by RES cannot be scheduled. This could cause a mismatch between sup-
ply and demand on the power grid which, if not dealt with, can lead to grid instability and
voltage fluctuations. Thus, the concept of flexibility is introduced as the capability of the
grid to maintain this delicate balance between power generation and consumption [2, 3].
On one hand, grid flexibility can be enhanced on the supply side, as thermal, nuclear and
hydroelectric plants can adjust their power outputs in cases of demand fluctuations or
sudden drops in RES power output. On the other hand, flexibility can also be provided
on the demand side by using variable loads or power storage methods such as batteries
or hydroelectric plants.

Another side effect of this shift towards sustainability has been the ever-increasing demand
for Electric Vehicles (EVs) [4] and thus charging stations, which are controlled by aggre-
gators. Thankfully, by tweaking the power supplied when charging an EV, aggregators
can smooth demand curves and thus provide flexibility. One single home-grade charger
may not have an impact on grid flexibility, but an aggregator that controls several Direct
Current Fast Charging (DCFC) stations which have a reserved power capacity of between
50 and 350kW [5] could aid significantly in maintaining grid balance.

Previously, aggregators relied on simple heuristic strategies such as charging As Fast As
Possible (AFAP) or Round Robin (RR) for managing charging stations under parking
time constraints. But thanks to the increased availability of future data for electricity
prices, aggregators are starting to incorporate more elaborate strategies such as Model
Predictive Control (MPC) which finds the most profitable charging trajectory while re-
specting said time constraints. In fact, in cases where grid conditions can be forecasted
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and flexibility is remunerated, MPCs can be extended to minimize charging costs while
maximizing flexibility.

Over the last years, the use of Reinforcement Learning (RL) methods for minimizing
charging costs has gained significant traction, as these methods could handle scenarios
where grid data in highly uncertain or unavailable. However, almost none of the pub-
lished literature considers flexibility for profits maximization as no standard simulator
that includes flexibility has been established yet.

1.1. Thesis Purpose

Due to the absence in literature of RL solutions that consider flexibility in the EV charging
problem, the main objective of this thesis shall be to formulate the EV charging problem
including flexibility, so that various RL methods can be used to find a strategy that
minimizes operating costs and maximizes flexibility at the same time. For this reason,
a simulator that includes flexibility should be created to train the various RL agents.
Finally, after the RL solutions are developed, they should be compared to the current
state of the art solutions to prove their efficacy.

1.2. Thesis Overview

This chapter has been devoted to introducing the grid flexibility problem and justifying
the purpose behind this thesis. Chapter 2 will cover the state of the art methods cur-
rently used for EV dispatch, along with a more in-depth explanation of the concept of
flexibility. As the aim of the thesis is to provide an RL solution, the entirety of chap-
ter 3 will be devoted to providing the mathematical principles behind any general RL
algorithm and the four RL solutions will be deeply explained. As said algorithms need a
simulator for training, chapter 4 shall cover how an existing simulator has been extended
to accommodate for flexibility simulation. In chapter 5, the final results of the various
RL methods are presented and discussed, along with a comparison with MPC. Finally,
chapter 6 will provide the conclusions that can be drawn from the results and a road-map
will be presented with some key points that can guide future development in this area.
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2| State of the Art

Thanks to the increased availability of grid information, charging strategies are rapidly
evolving from simple heuristics to more sophisticated approaches that use said data to
identify and predict the most profitable charging trajectory at each time instant.

Due to the relative simplicity of the EV charging model, optimization-based control strate-
gies such as MPC can be used for the EV dispatch problem. These strategies solve a
numerical optimization problem at each time step to minimize the operating cost of the
aggregator over the prediction horizon (PH). Moreover, MPC can be extended to cases
were vehicle-to-grid (V2G) power injection is allowed [6] or cases in which regulating grid’s
flexibility is rewarded.

Although optimization-based methods always find the best solution, they rely on accurate
data regarding arrival and departure times for EVs and electricity prices, which in some
circumstances may not be reliable or available. For this reason, model-free methods [7–
9] based on RL are being studied as a promising alternative as they can be trained on
simulated scenarios using real world data and find strategies that do not rely on said
forecasts.

2.1. Economic MPC

The economic MPC (eMPC) [10] is a strategy used by aggregators that takes advantage of
future knowledge to find the most profitable charging trajectory by solving a constrained
minimization problem at every time step. The optimality of this method is highly de-
pendent on the fidelity of the charging dynamics model and the accuracy of the future
values.

2.1.1. MPC Fundamentals

Considering that a model of the system (plant model) is available, MPC uses forecast
values to predict future trajectories of the states over the PH and then chooses to apply the
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input for the trajectory that minimizes a cost function J(·), which is normally dependent
on the control input u and states x for setpoint tracking. Figure 2.1 illustrates that while
the calculated input trajectory spans only for a certain number of time steps (which is
normally known as control horizon or Hc), the evolution of the states is calculated until
the end of the PH, ensuring that said states stays within acceptable values even when no
input is being applied.

Figure 2.1: Temporal evolution followed by MPC [10]

System definition and prediction

As previously said, MPC relies on having an accurate representation of the plant to gen-
erate the trajectories. In this case, a linear time invariant (LTI) system will be considered
as in (2.1) where xk represents the state vector, uk represents the input vector and yk col-
lects the measured outputs, which in this case equal to the states as the model is strictly
proper with C = I. It is worth mentioning that MPC can be extended to cases where the
system representation is non-linear. This will not be covered as subsection 2.1.2 shows
how the EV charging dynamics can be modeled using an LTI system.

xk+1 = Axk +Buk

yk = Cxk

(2.1)
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Taking system (2.1) with system matrices A,B and C, the evolution of the system can be
predicted until PH using the matrix equation x̂ = Axk0+Gu where x̂ a is matrix containing
the state evolution until PH, xk0 being the initial state vector and d u containing the free
control input evolution until Hc. Matrices A and G are constructed according to (2.2).
Using this approach, the future evolution of the states can be predicted and optimized
using u.

A =



A

A2

...
AHc

AHc+1

...
APH


, G =



B 0 0 · · · 0

AB B 0 · · · 0
...

...
... . . . ...

AHc−1B AHc−2B · · · · · · B

AHcB AHc−1B · · · · · · AB
...

...
... . . . ...

APH−1B APH−2B · · · · · · APH−HcB


(2.2)

Objective function definition

Considering a generic case of set-point tracking, the controller’s objective should be to
minimize the error between the state and the reference (x̂−z) while minimizing the use of
the control signal. Said objective can be achieved by minimizing a quadratic cost function
like the one shown in (2.3), where Q is a diagonal positive semi-definite matrix that sets
the penalty for output tracking while R is also diagonal but positive definite, penalizing
the control input effort or usage. It should be noted that, as both the states and control
inputs shall be between acceptable and-or feasible ranges, the final minimization problem
is always constrained.

min
u

J(u) = (x̂− z)TQ(x̂− z) + uTRu

s.t. xmin ≤ x ≤ xmax

umin ≤ u ≤ umax

(2.3)

2.1.2. Aplication to EV charging case

To apply the MPC strategy to the EV charging station problem, first it is required to
formulate the problem and develop the system model. The scheduling problem considers
a set I of charging stations that serve a set J of EVs over a 24 hour period. The state
variable considered by the controller is the state of charge (SoC) of EV j connected to
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charger i at time step k (SoCj,k = xi,k), which can be controlled by the output or decision
variables that represent the power delivered to charger i (Pi,k). To solve the scheduling
problem, the controller also has available forecast information regarding electricity prices
and information about incoming EVs arrival time and SoC, departure time, etc. The
notation for said information can be found in table 2.1.

When a EV is connected to a charger, its SoC can be modeled by equation (2.4). Here
an auxiliary binary variable ξi,k represents if there is an EV connected to charger j at
time k. This variable is used to update the state variable when an EV arrives (k = aj) or
when it leaves (k = dj). So basically, the equation is updating the state variable to the
SoC of the EV at time of arrival using condition 1, then while the EV is connected, its
SoC is updated using the energy injected by the charger during the time step duration,
calculated as Pi,k∆t. And finally, when the EV departs, the state variable is set to zero
using condition 3.

xi,k+1 =


SoCj,aj if ξi,k = 1 and k = aj,

xi,k + Pi,k∆t if ξi,k = 1 and aj < k < dj,

0 if ξi,k = 0 or k = dj.

(2.4)

Now as the problem has been correctly defined and the plant model is obtained, the min-
imization problem for the economic MPC is presented in the following set of equations.
The cost function to be minimized is shown in (2.5), and it calculates the total economic
cost of the power consumed by the charging stations throughout the control horizon,
considering the specific electricity prices at each time instant. In contrast to (2.3), this
function does not contain any state variables, as there is no need for reference tracking in
this problem.

To ensure that the trajectory followed by the eMPC complies with the charger’s dynamics,
they are added as a constraint to the problem (2.6). Constrains (2.11) and (2.10) ensure
that the max power of the charger and maximum SoC of the EV are respected. And
finally (2.7) ensures that EV j is fully charged at the time of departure dj.
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Type Name Symbol Units
Independent variable Time slot k -
State variable State of Charge in charger i xi,k kWh
Output Variables Power delivered by the station PT,k kW

State of Charge in EVj SoCj,k kWh
Decision Variables Power delivered to charger i Pi,k kW
Parameters Battery capacity in EVj Cj kWh

Electric vehicle j j -
Prediction horizon H h
Number of EV battery chargers I -
Number of EVs J -
Actual SoC in EVj at aj SoCj,aj kWh
Actual SoC in EVj at dj SoCj,dj kWh
EVj arrival time aj h
Energy Price ck e/kWh
EVj departure time dj h
Time for charging at maximum power dm min
Maximum power for all chargers Pmax kW
Schedule of charger i ξi,k {0,1}
Sampling time ∆t min

Table 2.1: Table of Variables and Parameters for the EV scheduling problem

min
ui,k

∆t

Hp−1∑
k=0

(
ck

I∑
i=1

ui,k

)

s.t. xi,k+1 =


SoCj,aj if ξi,k = 1 and k = aj,

xi,k + Pi,k ∆t if ξi,k = 1 and aj < k < dj,

0 if ξi,k = 0 or k = dj

xi,dj = xi,max

xi,aj = SoCj

xi,max = Cj

0 ≤ ui,k ≤ Pmax

0 ≤ xi,k ≤ xi,max

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

By finding the minimum solution of this problem, the eMPC ensures that the selected
trajectory will be optimal while satisfying charging requirements, meaning that all EVs
will be charged to 100% in their corresponding parking times. By repeating the process
at every time step, the trajectories may be adjusted if there is any change with respect
to the forecasted value.
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2.2. Optimal Control with minimum Cost and max-

imum Flexibility

The Optimal Control with minimum Cost and maximum Flexibility (OCCF) [11] can be
built on top of the eMPC strategy to be used in situations where providing flexibility
capacity to the grid is rewarded economically.

2.2.1. Flexiblity definition

As introduced in chapter 1, flexibility on the demand side can be understood as the ca-
pacity to adjust the power consumption of a load to smooth any mismatch between power
generation and demand in the power grid. This capacity shall be considered in both di-
rections. Meaning that the load shall be able to draw more power from the grid, known
as Upwards Flexibility (UF ) , or lower its power consumption when required, which
is known as Downwards Flexibility (LF ). Therefore, the total flexibility capacity of
an aggregator for a given time step k can be considered as the sum of both upwards
and downwards flexibilities that all charging stations managed by the aggregators could
supply, as shown in (2.12). It should be mentioned that EV charging stations could also
provide flexibility when V2G is enabled by injecting power into the grid, but this is out
of the scope of this case study.

Fk =
I∑

i=1

Fi,k =
I∑

i=1

(
UF
i,k + LF

i,k

)
, ∀k = 1, 2, . . . , K, (2.12)

The previous definitions for both types of flexibilities can be used to obtain its values for
a single charging station. With Equation (2.13), the upwards flexibility can be defined as
the capacity of the charging station to increase power consumption, meaning that it shall
be the difference between the maximum power and instant power output of the station.
On the other hand, as downwards flexibility should be the capacity of the station to lower
its power consumption, it can be defined with just the power injected into the EV, as
shown in (2.14). However, to provide flexibility in both cases, an EV shall be connected
to the charger (ξi,k = 1) and said EV shall not be fully charged. Another condition shall be
that the time to charge at maximum power shall be lower than departure time (k < dm),
as if this condition is not satisfied, the charger is obligated to charge at maximum power
and can’t increase or lower its power consumption.
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UF
i,k =

Pi,max − Pi,k if ξi,k = 1 and k < dm,

0 if xi,k = xi,max or xi,k = 0 or k ≥ dm.
(2.13)

LF
i,k =

Pi,k if ξi,k = 1 and k < dm,

0 if xi,k = xi,max or xi,k = 0 or k ≥ dm.
(2.14)

2.2.2. OCCF Minimization problem

As the scheduling problem has already been constructed for the eMPC, flexibility can
be maximized by just extending the model presented in subsection 2.1.2. Using this ap-
proach, upwards and downwards flexibilities are added to the cost function (2.15) with a
negative sign, as they should be maximized. The flexibility multiplier 0 < πF ≤ 1 implies
that flexibility is rewarded with a fraction of the electricity cost. Meaning that, as πF

approaches 1, the OCCF will find trajectories that maximize flexibility as they reduce the
operating cost of the aggregator.

Concerning the set of constrains, when considering flexibilities definitions (2.13) and
(2.14), one can express the upwards flexibility as UF = Pmax−LF and thus the downward
flexibility becomes LF = Pmax−UF . Meaning that both flexibilities can be added into the
single expression from (2.20), where the binary variable ξi,k ensures that the constraint
is only active when there is an EV connected to charger i. Finally, constrains (2.23) and
(2.24) set the upper and lower bounds for both flexibilities.
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min
ui,k

∆t

Hp−1∑
k=0

(
ck

I∑
i=1

ui,k − ckπF

I∑
i=1

UF
i,k + LF

i,k

)

s.t. xi,k+1 =


SoCj,aj if ξi,k = 1 and k = aj,

xi,k + Pi,k ∆t if ξi,k = 1 and aj < k < dj,

0 if ξi,k = 0 or k = dj

xi,dj = xi,max

xi,aj = SoCj

xi,max = Cj

LF
i,k ≤ ui,k ≤ ξi,k(Pmax − UF

i,k)

0 ≤ ui,k ≤ Pmax

0 ≤ xi,k ≤ xi,max

0 ≤ UF
i,k ≤ Pmax

0 ≤ LF
i,k ≤ Pmax

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

This problem formulation ensures that the objective minimizes the operating cost of the
aggregator by minimizing energy cost and maximizing flexibility. Figure 2.2 compares the
savings of both eMPC strategy and OCCF with respect to AFAP, in which one can see
even when taking the most conservative scenario (πF = 0.1), OCCF can double the mean
saving that eMPC can achieve while also providing more flexibility to the grid.

Figure 2.2: Overall saving with respect to AFAP strategy when considering 500 randomly
simulated EV arrival scenarios [11]
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These results highlight that incorporating more complex scheduling methods not only
provides savings for both consumers and maintainers of EV charging stations, they can
also solve the critical problem of flexibility as the energy mix of most countries is tran-
sitioning to RES. However, EV charging strategy development should continue beyond
MPCs and explore newer and more promising methods that do not rely so heavily on
forecasted data.
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3| Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that deals with how agents
can learn to make decisions by interacting with an environment. And unlike supervised
learning, where models learn from a set of labeled examples, RL is centered around the
concept of trial and error, where an agent explores actions and learns from the conse-
quences in the form of rewards or penalties.

RL is not a new concept, in fact, most of the theory behind it was developed in the late
1950s when Richard Bellman introduced the principle of dynamic programming [12] as
part of its research in optimal control theory. Bellman’s key contribution was the Bellman
Equation, which formalized the process of breaking down decision-making problems into
simpler sub-problems, ultimately leading to the concept of an optimal policy. While dy-
namic programming provided the theoretical foundation for decision-making in sequential
tasks, it required full knowledge of the environment’s dynamics, which limited its practi-
cal applicability.

In the 1980s, RL began to evolve into a more practical framework with the development
of algorithms like Temporal Difference (TD) learning and Q-learning, allowing agents to
learn from experience without requiring a model of the environment. However, it was not
until the last decade, particularly with the introduction of the Deep Q-Network (DQN),
that RL truly advanced. DQN successfully combined Q-learning with deep neural net-
works, enabling RL to handle high-dimensional state spaces, such as those encountered
in complex video games. This breakthrough paved the way for more sophisticated al-
gorithms, including Deep Deterministic Policy Gradient (DDPG), Trust Region Policy
Optimization (TRPO), and Proximal Policy Optimization (PPO). These methods en-
hanced stability and can be applied in complex and continuous action spaces.

After this brief introduction, the previously mentioned methods will be explained in detail
but not before an explanation on the key mathematical concepts behind any RL algorithm.
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3.1. Preliminaries

Any RL problem can be represented as a closed-loop system as shown in Figure 3.1. At
each time step, the agent selects an action At based on a policy and the current state St,
then the environment returns the next state St+1 and a reward Rt+1.

Figure 3.1: Agent-Environment interaction [13]

The environment can be modeled as a Markov Decision Process (MDP) [14], which is
characterized by the tuple (s, a, P ) where s ∈ S represents the set of all possible states
and a ∈ A denotes the set of actions available to the agent. The transition dynamics are
governed by P (s′, r | s, a), which defines the probability that, when taking action a in state
s, the environment will transition to the next state s′ and the agent will receive a reward r.

3.1.1. Agent and policies

The agent selects actions based on its past experience and a given policy. The objective
of any agent is to maximize the cumulative reward, as defined in (3.1). This metric is
influenced by the parameter γ ∈ (0, 1], known as the discount factor. This parameter
balances immediate and future rewards in the decision-making process. A
lower value of γ makes future rewards less appealing for the agent, encouraging a focus
on immediate outcomes.

Gt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k (3.1)

To maximize this reward, agents update and follow a policy. Policies can be divided into
two categories:

• Stochastic policies π(a|s): Probability of selecting action a when in state s, these
policies are exploratory by nature.

• Deterministic policies q(s): Maps a state directly to the action that will yield
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the maximum reward as in (3.4) . Also called greedy policies.

Exploration vs. Exploitation

At first, one may think that using a deterministic policy is the best option for an agent,
as it always selects the action with the highest reward. But as the agent does not have
full knowledge of the system dynamics, it may get stuck selecting sub-optimal actions as
it has not yet discovered that there are better ones.

To tackle this problem, agents normally use ϵ-greedy policies which achieve the right
balance between these two behaviors. When using said policies, agents will normally select
the action with the highest reward, meaning that they are exploiting the knowledge that
they have of the system’s dynamics. But there is a ϵ % chance of selecting a random
exploratory action.

Figure 3.2: Average performance ϵ-greedy methods in a 10-armed bandit environment
with different probabilistic distribution [13]

In Figure 3.2 it can be seen how using a higher value for ϵ improves both the average
reward and the optimal action selection. The problem with using ϵ-greedy policies (or
stochastic policies in general) is that they cannot be optimal by nature, due to the
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probability of selecting the exploratory action. This will be explaining in further detail
in Section 3.2 .

3.1.2. Value Functions

Value functions are used by the agent to estimate how good it is to be in a certain state
or to take a specific action, as they provide a mathematical estimation of future rewards.
This stems from the fact that they are defined as the expected discounted return for the
agent starting at state s and following policy π.

vπ(s)
.
= Eπ[Gt | St = s]

= Eπ[rt+1 + γGt+1 | St = s]

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)[r + γEπ[Gt+1 | St+1 = s′]]

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)[r + γvπ(s
′)] for all s ∈ S

(3.2)

The equation shown in (3.2) is the definition of the state-value function. It quantifies
the value of the state as the product of:

• The probability of choosing action a according to policy π(a|s).

• The probability of landing in next state s′ with reward r.

• The reward plus the state-value function of the next state (with discount γ).

Analogously, one can write the state-action function qπ(s, a) which also accounts for
selecting action a as in (3.3). The key of writing value-functions in such recursive way is
that if the MPDs dynamics are known, starting from one state one can compute the value
function for the rest of states, and once this is done, the greedy policy can be constructed
according to (3.4), this is known as policy improvement.

qπ(s, a)
.
= Eπ [Gt | St = s, At = a] = Eπ

[
∞∑
k=0

γkrt+k+1 | St = s, At = a

]
(3.3)

π′(a|s) = argmax
a

qπ(s, a) (3.4)

As π has changed for its improved version π′, the value functions shall be recomputed for
this newer policy, which is known as policy evaluation. This iterative process is known
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as Policy iteration [15] and in Figure 3.3 it can be see that after a finite number of
iterations, this method will converge to the optimal policy π∗ and value function v∗.

Figure 3.3: Visual representation of the policy iteration method. First the current policy
is evaluated by computing its value function, and then it is improved by taking the greedy
action [13].

3.1.3. Temporal Difference Learning

The Policy Iteration method previously described converges to an optimal policy, but it
can only be applied if the environment’s dynamics are fully-known. As this is rarely the
case, the best alternative is to estimate and update the value functions using the experi-
ences gained during exploration.

This is the main idea behind Temporal Difference (TD) methods [16]. They exploit
the definition of the return being Gt = Rt+1 + γV (St+1) to make an update based on
the difference between the expected return (which is in part estimated) and the current
estimation of the value function as shown in (3.5). This difference is referred to as TD
error δt and is multiplied by a learning rate α to set the update rule for V (St). It can be
proven that, even when starting at arbitrary values, the value functions converges to the
real one in a finite number of iterations.

V (St)← V (St) + α[Gt − V (St)]

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]
(3.5)

Using this method, one would get the value function for the environment without needing
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knowledge of the MPD dynamics. And once the value function has converged, an optimal
policy can be derived. An alternative solution is the SARSA algorithm [17, 18], which
estimates both action-values using the TD error as shown in (3.6) and follow an ϵ-greedy
policy to get a working agent.

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (3.6)

To achieve faster convergence to the (semi) optimal policy, Q-learning [19] uses the same
principle as SARSA but uses the greedy action for the update rule as in (3.7) to directly
estimate the optimal action value function Q∗(s, a). Q-learning is said to be an off-policy
method, because while following a stochastic policy, the update rule takes the optimal
action. This types of methods will be discussed in subsection 3.2.3 .

Q (St, At)← Q (St, At) + α
[
Rt+1 + γmax

a
Q (St+1, a)−Q (St, At)

]
(3.7)

3.1.4. Function approximation

The two previously described methods only work in tabular scenarios, that is, where the
state space is perfectly discretized. A solution for applying these methods when dealing
with a continuous state space is just to discretize the space, effectively turning it into
a tabular scenario. This solution leads to two problems, first the memory requirements
grow exponentially the smaller the discretization is, and secondly, visiting each one of the
states several times until the value function converges may be impossible.

For this reason, the best solution is to construct a function approximator Qπ(s, a) ≈
Q̂(s, a, θ) which depends on the feature vector θ so that, even if the agent does not visit
every state, it can generalize and get an approximate solution for state-action pairs that
has not yet visited.

Figure 3.4 shows how a neural network (NN) with weights θ can be used to predict the
state-action values. NNs are chosen for this purpose as they are known of being capable
of approximating any continuous function [20]. The feature vector is chosen to minimize
the square TD prediction error (3.8) using stochastic gradient descend (SGD).

Li(θi) = E
[
(rt+1 + γQ(st+1, at+1; θi−1)−Q(s, a; θi))

2] (3.8)
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Figure 3.4: NN approximating the Q-values from continuous states s1, . . . , sn using two
hidden interconnected layers

This was the first proposed solution, but it suffered stability issues during training due to
the fact that the samples are correlated (which is known to cause problems when using
SGD) and because the weight vector is being changed at each iteration (the Q-value
changes drastically even for the same state-action pair). Deep Q-networks [21] introduced
some changes to be the first effective Q-learning algorithm that could use NNs. First,
samples are stored and retrieved randomly for a replay buffer to reduce correlation, and
secondly, it uses a target network for the computation of the Q-values. This target is a
copy of the current network with weights wi which is not changed every iteration, instead
it is updated at every 500 iteration (θi = wi) as shown in (3.9). This enhances stability
during training.

Li(θi) = E
[(

rt+1 + γmax
a

Q(st+1, a;wi)−Q(s, a; θi)
)2]

(3.9)

Although DQN has no problems handling large continuous observation spaces such as
84x84 RGB images, it cannot deal with continuous action spaces. Nevertheless, the
contributions made by this work inspired most of the methods covered in latter sections,
specially DDPG which will be covered in Section 3.3.
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3.2. Policy Gradient Methods

All the methods described on section 3.1 can be categorized under the umbrella term
action-value methods, which learn the action value and then use them to determine
the action to select. On the other hand, there exists another family of methods which
directly learn a parameterized policy (depending on a parameter vector) without the need
of action-value estimation. These types of methods are referred to as policy gradient
methods, meaning that they update the policy parameter vector in the direction that
maximizes a performance index, as can be seen in (3.10) . This index is normally chosen
to be the expected discounted reward when following policy πθ (η(θ)). Taking a close
look at this metric in (3.11) and comparing it to equation (3.2) it can be seen that the
performance metric can also be expressed as the value function when following said policy
(J(θ) = vπ(s)).

θt+1 ← θt + α∇J(θt) (3.10)

J(θ) = η(π) = Eπ

[
∞∑
t=0

γtr(st, at)

]
(3.11)

These methods are normally preferred in control problems as they have no issue with
handling continuous action spaces. Also, another improvement is that these methods can
be adapted to use deterministic (optimal) policies, whereas action-value methods should
always use stochastic ones.

3.2.1. Policy Gradient Theorem

For using the update rule in (3.10), it is required to get an expression for the gradient of
the policy with respect to J(θ). Thankfully, the policy gradient theorem [22] gives the
contribution of a single state to the gradient of the performance index as can be seen in
(3.12).

∇J(θ) = Eπ

[∑
a

Qπ(St, a)∇π(a|St, θ)

]
. (3.12)

Using this contribution, the REINFORCE algorithm [23] replaces a generic action a by a
sampled action At ∈ π to make the expression dependent on the Q-values, then it takes
advantage of the definition of said value function (3.3) to make the gradient dependent
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on the return as can be seen in (3.13).

∇J(θ) = Eπ

[∑
a

π(a|St, θ)Qπ(St, a)
∇π(a|St, θ)

π(a|St, θ)

]

= Eπ

[
Qπ(St, At)

∇π(At|St, θ)

π(At|St, θ)

]
= Eπ

[
Gt
∇π(At|St, θ)

π(At|St, θ)

] (3.13)

This algorithm first generates a trajectory using the Monte Carlo method [24] to gather
the states, actions and return at each time step and then uses the update rule from (3.14)
to perform gradient ascend on the performance index.

θt+1
.
= θt + αGt

∇π(At|St, θt)

π(At|St, θt)
. (3.14)

3.2.2. Actor-critic methods

One drawback of Monte Carlo methods like REINFORCE is that they require waiting
until the end of an episode before performing any policy optimization. Fortunately, the
TD error can be integrated into policy gradient methods, allowing for gradient ascent
updates at each time step, thus speeding up convergence. Actor-critic methods [25, 26]
address this by replacing the full return used in REINFORCE by the one-step return.
Equation (3.15) outlines the update rule for the actor, which uses the parameter vector θ
to define the policy.

θt+1
.
= θt + α

(
Gt:t+1 − Q̂(St, At,w)

) ∇π(At|St, θt)

π(At|St, θt)

= θt + α
(
Rt+1 + γQ̂(St+1, At+1,w)− Q̂(St, At,w)

) ∇π(At|St, θt)

π(At|St, θt)

= θt + αδt
∇π(At|St, θt)

π(At|St, θt)

(3.15)
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Figure 3.5: Diagram showing the working principle behind any actor critic method: the
critic uses the state and the reward returned by the environment to generate the TD error.
This error is used to develop a better approximation of the value function and to update
the policy.

In this approach, estimating δt is required to perform the update. This is done by the
critic as can be seen in Figure 3.5 . The critic uses vector w to estimate the value function
Q̂(s, a, w) ≈ Qπ(s, a) and calculate the TD error, which is used to update itself and the
actor. Vector w can be adjusted using one of the TD methods seen in subsection 3.1.3 such
as SARSA or Q-learning when dealing with a tabular case, or function approximation in
a continuous one. In such case, SGD shall be used to reduce the mean squared error from
(3.16).

e(w) = Eπ

[(
Q̂(s, a, w)−Qπ(s, a)

)2]
(3.16)
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3.2.3. Off-policy methods

To get one step closer towards optimal policies, the concept of off-policy methods shall be
introduced. Previously, ϵ-greedy policies were always used to maintain exploration despite
the fact that they are intrinsically suboptimal. Now, two completely different policies can
be considered: first, a behavioral policy β(a|s) is used to encourage exploration, which
is purely stochastic and normally set to a uniform distribution between actions. Then a
target policy π(a|s) is constructed using the sampled data from the behavioral policy.
This policy shall be greedy with respect to action-values, as in (3.4).

As now the samples are not coming from the policy that is being optimized, an impor-
tance sampling ratio shall be used. This ratio is set to the probability of selecting
a state-action pair under π over the probability of taking the same pair in β (πθ(a|s)

β(a|s) ).
Equation (3.17) shows how adding the sampling ratio gives an expression of the gradient
with respect to J(πθ) even when the samples are taken from β. This trick is used to
derive an effective off-policy actor-critic algorithm [27] which laid the groundwork for the
algorithm presented in the next section.

∇J(πθ) = Eβ

[
πθ(a|St)

β(a|St)

∑
a

Qπ(St, a)∇πθ(a|St)

]
(3.17)

3.3. Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient [28] or DDPG for short is an algorithm that combines
the tricks incorporated by DQN with the techniques seen in section 3.2. This off-policy
actor-critic algorithm is capable of deriving deterministic policies which can be used in
continuous action spaces, that is, the action space is not discrete.

3.3.1. Deterministic Policy Gradient

For handling continuous actions, DDPG considers directly a parameterized deterministic
policy (at = µθ(st)) that shall be optimized. However, the policy gradient theorem used
to calculate the gradient of the objective function from (3.12) only works for stochastic
policies. Thankfully, [29] derived the expression shown in (3.18) thanks to the introduction
of the deterministic policy gradient theorem.
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∇J(µθ) = E
[
∇θµ0(s)∇aQ

µ(s, a)
∣∣∣
a=µ0(s)

]
(3.18)

This theorem stems from the fact that, when dealing with continuous action spaces, using a
greedy policy improvement as in (3.19) becomes problematic, as it requires solving a global
maximization problem at each iteration. A less computationally expensive alternative is
to move the policy in the direction of the gradient of the Q-values, as expressed in the
update rule (3.20).

µk+1(s) = argmax
a

Qµ(s, a). (3.19)

θk+1 = θk + αE
[
∇θQ

µk

(s, µθ(s))
]

(3.20)

Then, using the chain rule and considering an action sampled by the policy (a = µk(s))
the final update rule from (3.21) gives an expression for the gradient of a deterministic
policy, which is exactly the expression used to derive the deterministic policy gradient
theorem. In fact, it has been proven that the deterministic version of the theorem is a
special case of the stochastic one. This was done by modeling the deterministic policy as a
stochastic policy with varying variance, then as the variance tends to zero, both gradients
converge to equal values (limσ↓0∇θJ(πµ0,σ) = ∇θJ(µ0)).

θk+1 = θk + αE

[
∇θµθ(s)∇aQ

µk

(s, a)

∣∣∣∣
a=µθ(s)

]
(3.21)

3.3.2. Final algorithm

The DDPG algorithm can be seen as an extension of the DQN algorithm but using a
different update rule to account for the fact that it uses a deterministic policy. In re-
ality, this algorithm also incorporates a replay buffer and both the actor and critic use
target networks for enhanced stability. A small difference between both works is that,
while DQN updates the target every 500 iterations, DDPG updates the targets at each
iteration but using a moving average of the weights, stabilizing training even more.

It should be noted that, to maintain exploration while preserving the deterministic nature
of the policy, a random action noise is added during training. Meaning that actions taken
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are actually a = µθ(s) + N . This noise is normally set to be Ornstein-Uhlenbeck (OU)
Noise [30] as actions are temporally correlated.

3.3.3. TD3

One drawback discovered when using DDPG is that the critic was prone to suffer from an
overestimation bias with respect to the Q-values, meaning that, the estimated values are
always higher than the real ones. To address this issue, Twin Delayed Deep Deterministic
Policy Gradient or TD3 [31] was developed and introduces three main modifications to
address this issue:

1. Double Q-learning: TD3 incorporates two different critic networks, which are
initialized and updated separately. Then, the actor simply takes the lowest value
for the two critics to make an update. Effectively reducing overestimation.

2. Target Smoothing: TD3 also adds a clipped Gaussian noise to the target action
while updating the critic, meaning that while the policy takes action a with its own
OU noise, the critic is updated with action a′ = a+ ϵ, ϵ ∼ N (0, σ). This prevents
the critic from becoming too sensitive to minor changes in the target policy, thus
reducing variance of Q-values.

3. Delayed Policy Updates: To ensure that the actor is updated using more reliable
estimates, its update is done at every two or more iterations, while the critic is still
being updated at every iteration.

3.4. Trust Region Policy Optimization

DDPG is not the only method prone to suffering from stability issues during training.
In general, all policy gradient methods are known from this drawback. This stems from
the fact that the policy is being optimized on approximations of both the expected dis-
counted reward and its gradient constructed at (s, a). Naturally, while the approximation
may be reasonable at these points, it degrades when moving away from said pair.

Trust Region Policy Optimization (TRPO) [32] interiorize this intrinsic defect of using
function approximation and deal with them by applying a trust region (TR) constrain
to limit the divergence between old and new policies, thus reducing the risk of sudden
performance drops.
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3.4.1. Trust Region Methods

When considering numerical optimization methods [33], TR methods achieve the right
balance between the fast convergence speeds of quadratic approximation methods such
as the Newton method and the stability of using a first-order approximation such as the
gradient method.

Figure 3.6: Comparison of steps taken between trust region methods and line search
methods when minimizing f [33]

Figure 3.6 shows how while line search methods perform the minimization over a single line
(the steepest descent direction), TR methods perform the minimization over the whole
region. However, the step cannot go over the TR size as the quadratic approximation
may not match the objective function anymore. Equation (3.22) shows how this can be
achieved by just adding a hard constraint to the minimization problem, where mk is the
quadratic approximation of f at the current point xk.

min
p∈Rn

mk(p) s.t. ∥p∥ ≤ δk (3.22)

Region size

Choosing a correct value for δk is crucial for step effectiveness (which will determine
convergence speed). If this value is chosen to be small and conservative, each step will
not yield sufficient reduction and the TR method may become slower than just using a
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typical line search method. However, if the TR size is chosen to be too large, mk may
not match f and the iteration could result in a failed step, meaning f(xk) < f(xk+1).
Fortunately, the TR size can be adjusted iteratively according to the following scheme:

1. Obtain a trial step pk by solving the constrained sub-problem (3.22).

2. Compute the performance metric ρk as the ratio between the predicted and actual
reduction.

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(3.23)

3. Update TR size based on ρk.

δk+1 =


1
4
δk if ρk < 1

4

δk if 1
4
≤ ρk ≤ 3

4

min(2δk, δmax) if ρk > 3
4

(3.24)

4. Update the point xk+1

xk+1 =

xk + pk if step is successful

xk else
(3.25)

Using this update algorithm, even if the value of δk is not chosen properly at the start,
it will adapt depending on the performance of the quadratic approximation at each time
step.

Adding this TR constraint to the maximization problem is the main idea behind TRPO.
However, first a metric should be constructed that measures the difference between the
new and old policy.

3.4.2. Conservative Policy Iteration

In [34], Kakade and Landford proposed an useful identity that expresses the expected
return of a new policy π̃ in terms of its advantage over an old policy π. This relationship
is dependent on the visitation frequency

∑
s ρπ̃(s) and the advantage value function, which

can be defined as Aπ(s, a) = Qπ(s, a)− Vπ(s).

η(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a) (3.26)
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Due to the dependence of (3.26) on the trajectory of the new policy ρπ̃(s), a local ap-
proximation can be computed based on the trajectory of the old policy as can be seen in
(3.27). This approximation can be used for optimizing the policy, as it was proven that,
when using parametrized policies πθ(a|s), it approximates the objective function and its
gradient perfectly as Lπθ0

(πθ0) = η(πθ0) and ∇θLπθ0
(πθ)

∣∣
θ=θ0

= ∇θη(πθ)
∣∣
θ=θ0

.

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a) (3.27)

After this discovery, the authors proposed an update scheme called Conservative Policy
iteration (CPI) which provides a lower bound for η(π̃) shown in (3.28). The dependence
of the bound on α2 implies that any over-aggressive updates on the policy will be penalized,
as α is the distance between the old policy π and π′, which is the greedy policy with respect
to Lπ.

η(π̃) ≥ Lπold(π̃)−
2ϵγ

(1− γ)2
α2 (3.28)

ϵ = max
s

∣∣Ea∼π′(a|s)[Aπ(s, a)]
∣∣ (3.29)

π̃(a|s) = (1− α)π(a|s) + απ′(a|s). (3.30)

3.4.3. Extension to stochastic policies

Although the previous update scheme was proved to tend to the monotonic improvement
of the expected reward, it was only applicable to mixture policies constructed as (3.30). To
extend this scheme while maintaining monotonic improvement, a new metric is introduced
to measure the distance between policies called KL divergence (3.31).

DKL(π ∥ π̃) =
∑
s

∑
a

π(a|s) log
(
π(a|s)

π̃

)
(3.31)

This new measure can substitute α in (3.28) and thus generate a new lower bound (3.32)
that is applicable to stochastic policies. The new lower bound uses C = 4ϵγ

(1−γ)2
and the

maximum KL divergence over all the states.

η(π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃), (3.32)
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This scheme can be used for the optimization of stochastic policies, as by maximizing the
lower bound, one would be maximizing the expected return of the policy. The problem
with this initial approach was that using coefficient C results in insufficient step size and
thus slow convergence speed. To tackle this issue, the KL divergence can be removed from
the objective function and a TR constrain can be added (3.33) , effectively controlling the
divergence of the policy from step to step.

3.4.4. Adaptation for sample-based methods

Adding the TR constraint turns the unconstrained maximization problem (3.32) into the
constrained one form (3.33). Also, as the KL divergence is bounded at every state, it is
changed with an average obtained by following a trajectory from π.

max
π̃θ

Lπ(π̃θ)

subject to Dρπ

KL(π, π̃θ) ≤ δ.
(3.33)

However, the local approximation from (3.27) still relies on having exact knowledge on
state distributions and advantage values. To make this approach compatible with MC,
three changes shall be introduced to the local approximation:

• The visitation frequency
∑

s ρπ̃(s) can be substituted by the expectation 1
1−γ

E,
although only the expectation can be left as the discount factor is constant.

• The advantage values can be substituted by Q-values.

• To replace the sum over the actions, an importance sampling estimator can be used.
It will depend on the method used to collect samples.

∑
a

π̃θ(a|sn)Aπ(sn, a) = Ea∼q

[
π̃θ(a|sn)
q(a|sn)

Qπ(sn, a)

]
(3.34)

Adding these slight changes, the contribution of a single state to the local approximation
is calculated as (3.34) and the final constrained optimization problem (COP) is presented
in (3.35).

max
π̃θ

Es∼ρπ ,a∼q

[
π̃θ(a|s)
q(a|s)

Qπ(s, a)

]
subject to Es∼ρπ [DKL(π(·|s)∥π̃θ(·|s))] ≤ δ.

(3.35)
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3.4.5. Sample collection methods

To collect the samples from the environment, TRPO can use the two methods shown in
Figure 3.7. On the left, the simpler single-path method is shown, in which the agent
just evaluates one trajectory at a time. While on the right, the vine method generates
several branches starting from state sn and evaluates the different trajectories based on
the different available action. Once a trajectory has been evaluated, the environment is
then reset to st to evaluate the next branch.

Figure 3.7: Single Path (left) and vine method (right) [32]

The vine method converges much faster when compared to single-path, mainly because
the Q-values are evaluated more often. However, it introduces a new level of complexity
to the problem, as now the importance sampling ratio from (3.35) should be recalculated
when evaluating different branches. On the other hand, when using the single-path, the
sampling ratio can just be set to the policy (q(a|s) = π(a|s)) as this is the only trajectory
being followed. Nevertheless, once one of the methods has been selected, the TRPO
algorithm can update the policy using the following steps:

1. Collect set of state-action pairs using the MC method.

2. By averaging over samples, the COP from (3.35) can be constructed by replacing
expected values by sample averages.

3. Solve the COP to update πθ.

For solving the COP, the original authors proposed using the conjugate gradient method
followed by a line search to be sure that the TR constrain is not violated. However, in
most practical application the natural gradient method [35] is used.
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3.5. Proximal Policy Optimization

TRPO satisfies its main objective of achieving stable policy updates but at the expense
of adding a constraint to the optimization process. For this reason, Proximal Policy
Optimization [36] or PPO was created, which instead of constraining the updates, uses
a clipped objective to prevent large policy updates. This addition preserves the stability
of TRPO while reducing the computational expense of solving a COP at every iteration,
as now the optimization process is unconstrained. This balance between stability and
lightness makes PPO one of the most used RL methods to date.

3.5.1. Clipped objective function

Both TRPO and PPO based their development on the proposed CPI method explained
in subsection 3.4.2. PPO sticks to using the advantage values (estimated advantage
values) but still replaces visitation frequency by the expectation and uses the importance
sampling introduced by TRPO. Equation (3.36) shows how the local approximation from
the CPI shown in (3.27) can be written with said modifications. In the first equation, the
term rt(θ) denotes the probability ratio between the new and old policy and is used for
evaluating the divergence of the policy (so rt(θold) = 1).

LCPI(θ) = E
[

πθ(at|st)
πθold(at|st)

Ât

]
= E

[
rt(θ)Ât

]
. (3.36)

As said previously, performing an optimization on this objective function will lead to
large policy changes. Luckily, it can be modified to penalize changes that would move
rt(θ) from 1. The objective function from (3.37) achieves this goal without adding any
constraints by choosing the minimum between the unclipped objective and the objective
with a clipped probability ratio. This addition removes any incentive of moving rt(θ)

outside [1− ϵ, 1+ ϵ] as it would not reflect any improvement as can be seen in Figure 3.8.

LCLIP (θ) = E
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
. (3.37)
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Figure 3.8: Plots representing how function LCLIP discourages updates that lead rt(θ)

being outside a desired range. This clipping is depend on if the advantage values are
positive (left) or negative (right) [36]

Figure 3.9 helps to understand how clipping encourages stable updates, because as the KL
divergence between policies grows, LCLIP is being penalized as it is lower when compared
to its unclipped version LCPI . Although this clipping discourages divergent updates, it is
far from stable when compared to constraining the KL divergence.

3.5.2. KL penalization

In subsection 3.4.3, it is explained how the first idea of the creators of TRPO was to use
a penalty coefficient C on the KL divergence as shown in (3.32), but it practice this term
leads to slow convergence. However, to penalize divergence even further, PPO maintains
a similar penalty coefficient β which it adapted iteratively using a similar method as the
one from subsection 3.4.1:

1. Using SGD, optimize the penalized objective from (3.38).

2. Compute d = E [KL [πθold(·|st), πθ(·|st)]]

• If d < 1.5δ, then β ← β
2

(penalize less).

• If d > δ
1.5

, then β ← 2β (penalize more).

LKLPEN(θ) = E
[

πθ(at|st)
πθold(at|st)

Ât − β KL [πθold(·|st), πθ(·|st)]
]
. (3.38)

Using this scheme, β is updated at each iteration and policy updates with KL diver-
gence higher than δ are rare. Now, the method can produce more stable updated when
compared to TRPO by just solving an unconstrained optimization problem, which is less
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Figure 3.9: Interpolation of functions between old policy parameter θold and the new
policy [36]

computationally expensive than a COP. Moreover, simpler optimizers such as SGD or
Adams [37] can be used. It should be noted that a critic should be introduced to compute
the advantage estimates Ât to construct the problem.
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4| Simulator Environment

When developing a successful RL solution, both the agent and the environment should
be treated with the same importance, as if the environment does not provide an accurate
representation of the scenario, the agent will yield a policy that will not perform in the
real world. Thus, while chapter 3 focused on the theory and implementation of different
agents, this chapter will provide an overview of the environment in which said agents will
be trained.

The environment selected for this scenario has been EV2Gym [9] for two main reasons:
first, it utilizes real-world data to serve as a simulator specifically tailored for training
RL agents. To achieve this, the simulator uses the charging dynamics seen in 2.1.2 to
model EVs, charging stations and other power distribution systems, ensuring that each
simulated episode is as realistic as one can get. Secondly, as an open-source platform
written in Python, it enables easy customization, making it possible to modify any aspect
of the simulation to suit the thesis’s specific needs.

4.1. Simulator Structure

To allow easy customization, EV2Gym follows a modular design, meaning that the dif-
ferent components of the simulation are defined and updated separately, as can be seen
in Figure 4.1.

Class structure

It can be seen that the heart of the simulator is located in the environment class, which
also serves as the main interface with the agent. When the simulation is started, this class
loads the simulation parameters from the configuration file and then spawns the different
objects (Transformers, chargers, EVs). It should be noted that at the initialization phase,
all the parameters of the EVs being simulated are defined and checked. Ensuring that the
simulated episode is feasible.
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Figure 4.1: Class diagram and functions of the simulator [9]

Figure 4.2: Phases and interactions while simulating a single episode in EV2Gym [9].

Simulation flow

After the initialization phase, the simulation is started. From the diagram in Figure 4.2
it can be seen that during this phase, the environment takes the action provided by the
agent and uses it to update the different objects of the simulation. As the design is mod-
ular, this can be achieved by just calling the step method of each class. Once the step
is done, the simulator calls both two pre-defined functions explained in subsections 4.2.2
and 4.2.3 to produce the state vector and reward metric that are returned to the agent.
The agent-environment interaction is standardized and follows the Gym API [38], ensuring
a smooth integration with other pre-existing libraries such as Stable Baselines3 [39] (SB3).

At each time step, the environment class checks for a series of termination conditions.
Once they are achieved, the simulation is stopped and the agent is notified. Next, func-
tions such as plots or evaluator are called (if needed). Finally, the simulator calls the reset
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method to repeat the initialization phase in case that another episode shall be simulated.

4.2. Modifications done

The simulator was created for scenarios in which the agent follows a defined charging
trajectory (set-point tracking) to maximize profits in scenarios where vehicle to grid (V2G)
power injection is possible. Also, no flexibility is modeled in the simulator. For this reason,
almost none of the predefined state and reward functions can be used. During this section,
the main modifications made within the code [40] will be presented and justified.

4.2.1. Adding flexibility

Flexibility has been added to the simulator following the guidelines from subsection 2.2.1.
That is, upwards and downwards flexibilities are modeled according to the equations
(2.13) and (2.14).

To add these new parameters to the code, first a set of new attributes are added to the
environment class to store the historical data of said flexibilities. Then, a new method
was created for said class called check to add flex. This function takes the data from a
charging station and calculates if the flexibility for said charging station should be added
based on three criteria:

• There is one EV connected to the charging station.

• The SoC of the EV connected is not at 100%.

• The time to charge at maximum power is lower than then departure time. This
condition check if the charger actually has the option to not charge at maximum
power.

Said method is then called when the simulator is updating itself, that is, when calling
the step method for each charging station. The method takes the data from the charging
station, calculates the minimum time to charge using the charger and EV parameters,
and if the three conditions are met, both flexibilities are added to their corresponding
variables for said time step, else a 0 is added.
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4.2.2. State Vector

Most of the predefined state functions include information regarding set-point tracking.
However, creating a new one proved to be a simple task, as it is just required to include
the desired environment variables in a 1D vector.

For the profit maximization case, while also considering flexibility, the proposed state
vector is shown in Figure 4.3. First, the current time step is included as a number bounded
between 0 and 1. This is done to preserve stability as passing large and unbounded
numbers can lead to unstable gradients during training. Then, both the aggregated
power and flexibility from the last time step are passed as two separate numbers. As
the agent has to decide the charging strategy, the price for electricity in e/kWh is passed
for a predefined number of steps, which is dependent on the variable PH. Finally, for
each charging station, the value for the SoC is passed (bounded between 0 and 1) and
the remaining time for the EV at its corresponding charging station. If there is no EV
connected to the charger, both variables are set to 0.

Figure 4.3: State vector passed to the agent at time step t considering an scenario with
K charging stations.

4.2.3. Reward function

Correctly modeling the reward function should be one of the main objectives when con-
structing an environment, as it has a huge weight on the agent’s final behavior. As the
main goal of the agent shall be profit maximization, the reward can be modeled as the
price for energy used to charge the EVs, the profit gained from the current flexibility (con-
sidering multiplier π) and user satisfaction reward function or LUSR as shown in (4.1).
This reward function resembles the objective function from section 2.2 but it is inverted.
This is because while the MPC aims to minimize the objective function, this reward is
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designed to be maximized.

r(t) = −ct
K∑
i=1

Pi,t + π · ct
K∑
i=1

Fi,t + LUSR(t) (4.1)

The user satisfaction reward (USR) is a new addition with respect to the MPC. This
function is only called in steps in which an EV is being dispatched (EV leaving its charging
station) and it will penalize the agent according to a score, calculated as the difference
between the final SoC of the EV at time of departure and the target SoC (which in this
case is set to 100%). This function needs to be constructed and tuned as, if not added,
the optimal policy for the agent would be to just not charge the EVs. In the case of MPC,
this condition is imposed as a hard constraint, as can be seen in (2.7) , but as in RL this
is not possible, it should be added as a soft constraint.

Figure 4.4: Default user satisfaction function provided by EV2Gym

To test the effectiveness of using the default USR provided by EV2Gym, different agents
were trained on a simple scenario with just two charging stations and no flexibility reward
(πF = 0). After training, all of the agents converged to policies in which not charging the
EVs was the best option to maximize the reward. Further analysis revealed that, when
considering a staring SoC of 70%, a mean price of 0.15 e/kWh, and EVs with a maximum
capacity of 50 kWh, charging the EV would yield a reward of -2.25. After looking at Fig-
ure 4.4, it is not surprising that the agents converged to said policy, as when considering
the same scenario, not charging the EV would lead to a reward of -0.1.
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As it was discovered that further penalization is needed, it was decided that to encourage
charging, a stronger exponential penalization is needed for SoCs lower than 85%. On the
other hand, an exponential reward was added for values greater than 95% to encourage
charging over said percentage, else, the optimal strategy would be to just charge at 85%.
Equation (4.2) shows the new piece-wise exponential function that was developed.

LUSR(x) =


−e−15(x−0.85) if x < 0.85

0 if 0.85 ≤ x < 0.95

e15(x−0.95) if x ≥ 0.95

(4.2)

Figure 4.5: Exponential user satisfaction reward function.

The same process of validation was followed for the new exponential function. However,
in this case, the agents did not even converge to a fixed policy. Mainly because, as ex-
ponential functions were used, agents were penalized too heavily when they did not even
knew which type of actions to take, making training extremely unstable.

A final test was carried out, this time using the linear piece-wise function from (4.3) whose
plot is shown in Figure 4.6. Using said function proved to be the best option, as while
performing poorly from the start, all agents converged to reasonable policies in which the
EVs were charged with a final SoC between 90% and 95%. This will be explained with
greater detail in chapter 5.
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LUSR(x) =


100x− 80 if x < 0.80

0 if 0.80 ≤ x < 0.85

13.33x− 11.33 if x ≥ 0.85

(4.3)

Figure 4.6: Linear user satisfaction reward function.

4.2.4. EV arrival distributions

The simulator uses real-world statistics from different scenarios (public, residential or
work) to generate the arrival time, time of stay and initial SoC of each EV that is spawned
during simulation. Considering the public scenario, it can be seen from Figure 4.7 that
the vast majority of EVs being simulated will start with a relatively high SoC (between
70% and 80%) and a long time of stay of around 4 to 8 hours. However, while this
methodology accurately represents a real-world situation, it makes most of the training
episodes useless for training. This is because in most events, the EVs arrive almost
fully charged (see Figure 4.8), therefore the agent cannot get experience on developing a
successful charging strategy.

To get the most training out of each episode, the initial SoC is sampled from an uniform
distribution between 40% and 60% and the parking time is sampled from a normal dis-
tribution max(N (4, 0.82), 2) as shown in Figure 4.9. Samples of parking time less than
2 hours are not allowed as it would require charging at maximum power, thus not being
helpful in the development of a policy.
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Figure 4.7: Probability density function for the arrival SoC and time of stay depending
on the arrival time for the three different scenarios that the simulator offers [9].

Figure 4.10 shows an episode being generated with the previously described modifications.
When comparing to Figure 4.8, it is clear that each episode is more useful for training the
agent. As the EVs arrive with a reasonable SoC and EVs are being generated per episode,
thus speeding up training. It should be noted that agents trained with the modified
probabilities shall perform better when evaluated using the default probabilities, as they
have been trained in a pessimistic scenario.
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Figure 4.8: Sample episode considering 4 charging stations using AFAP charging strategy
with default probability distributions

4.2.5. Matlab integration

EV2Gym comes with its own implementation of an MPC, so developing a solution for
section 2.2 is possible inside the simulator. However, for simplicity and to make the pro-
cess of plotting easier, it was decided to export the simulated episodes into Matlab and
run the OCCF code with said data.

To achieve this task, a new method has been added which creates a dictionary with all
the useful variables from the simulation and saves them into a .mat file. This method is
called when the termination criteria for the episode is met and the option savemat has
been set to True in the configuration of the environment.
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Figure 4.9: Updated probability density functions for initial SoC and time of stay.

Figure 4.10: Sample episode considering 4 charging stations using AFAP charging strategy
with modified probability distributions.
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5| Experimental results

After having a functional environment, the RL methods presented in chapter 3 can be
tested and compared against the optimization-based strategies described in chapter 2. As
different RL agents will be compared against MPC strategies using different flexibility
multipliers, the analysis shall be separated into different parts: first, the effects that said
multiplier has on the results shall be explained and only a few will be selected for the
comparison of the different RL agents. After selecting the set of multipliers, two out of
four RL methods will be chosen and thus the final analysis will only include the best
performing agents against the MPC methods. But before jumping into the results, the
methodology for training and comparison shall be explained for reproducibility purposes.

5.1. Experimental setup

All episodes used for training and evaluation are generated by the modified environment
from in chapter 4 using the specific parameters presented in table 5.1, which were selected
to facilitate the comparison with [11]. Before training even starts, 10 evaluation episodes
are generated as they are used to generate the final metrics for each agent. Over said
episodes, one evaluation episode is selected for plotting the trajectories shown throughout
this chapter.

As one of the objectives of the analysis shall be to understand how the flexibility multiplier
affects the final behavior of the agents, every agent is trained with a set of different
flexibility multipliers, in this case, they were selected as π = [0.0, 0.1, 0.3, 0.5, 1.0].
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Simulation Parameter Value
Time step duration 10 min

Episode lengh 24 hours
Prediction Horizon 6 hours (36 steps)
Number of chargers 15
Simulated scenario Public

Maximum power per charger 22 kW
EV battery capacity 50 kWh

Table 5.1: Simulator parameters used for training and evaluation.

RL training

Four RL agents were selected for the comparison: DDPG, TD3, PPO and TRPO. Each
agent was trained using the previously defined values of π with the default SB3 parameters
for 1 million iterations, which proved to be sufficient for all training metrics to stabilize.
During training, an evaluation function is called every 2500 iterations to test the agent’s
performance in deterministic mode (meaning that no exploration is performed) for 5
random episodes. After obtaining the mean reward of the evaluation episodes, the script
saves the current agent’s weights if the mean reward is the highest achieved so far. Once
training has stopped, the weights of the best performing agent are loaded and the agent
is evaluated on the initial 10 evaluation episodes, thus obtaining the final metrics.

MPC evaluation

As MPC only solves a minimization problem at each time step, no training is required
and the episodes can be evaluated directly. As the evaluation episodes were generated
using the savemat flag, they can be directly imported into Matlab and evaluated using
different flexibility multipliers to obtain the metrics.

5.2. Overall results

The results over the evaluation episodes are presented in the following tables. At a first
glance, the main difference between RL methods and MPC lies in the user satisfaction, in
which MPC achieved 100% in all episodes. This is expected because, as discussed through
4.2.3, the MPC has a hard constrain which imposes this behavior, while in RL methods
this is achieved by a soft constrain. Also, it should be noted that no reward function is
shown for the MPC, as it does not use this metric.
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Metric DDPG TD3 PPO TRPO MPC
Profits (e) -203 -213 -206 -167 -217
Energy cost (e) -203 -213 -206 -167 -217
Up Flexibility (kWh) 1875 1737 2406 3017 2836
Down Flexibility (kWh) 885 933 910 732 1144
Energy Charged (kWh) 960 1004 981 803 1145
User Satisfaction (%) 93.1 94.8 94.1 86.1 100.0
Reward -293 -251 -253 -445 -

Table 5.2: Agent performance for π = 0.0

Metric DDPG TD3 PPO TRPO MPC
Profits (e) -166 -173 -125 -139 -133
Energy cost (e) -223 -228 -206 -214 -224
Up Flexibility (kWh) 1702 1597 2946 2618 3224
Down Flexibility (kWh) 984 1001 918 954 1144
Energy Charged (kWh) 1070 1086 993 1030 1145
User Satisfaction (%) 97.8 98.6 94.3 96.6 100.0
Reward -125 -112 -135 -107 -

Table 5.3: Agent performance for π = 0.1

Metric DDPG TD3 PPO TRPO MPC
Profits (e) -33 -23 52 45 49
Energy cost (e) -218 -216 -194 -201 -224
Up Flexibility (kWh) 1964 2084 3052 3008 3227
Down Flexibility (kWh) 951 952 867 903 1144
Energy Charged (kWh) 1042 1040 937 976 1145
User Satisfaction (%) 96.5 96.6 92.5 93.6 100.0
Reward -22 -4 1 18 -

Table 5.4: Agent performance for π = 0.3
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Metric DDPG TD3 PPO TRPO MPC
Profits (e) 148 109 232 229 231
Energy cost (e) -204 -215 -190 -188 -224
Up Flexibility (kWh) 2440 2115 3172 3138 3228
Down Flexibility (kWh) 894 953 845 839 1144
Energy Charged (kWh) 984 1039 917 910 1145
User Satisfaction (%) 94.1 96.8 91.1 90.8 100.0
Reward 96 128 149 130 -

Table 5.5: Agent performance for π = 0.5

Metric DDPG TD3 PPO TRPO MPC
Profits (e) 625 512 706 700 715
Energy cost (e) -157 -194 -161 -163 -239
Up Flexibility (kWh) 3014 2508 3421 3389 3416
Down Flexibility (kWh) 693 844 720 727 1145
Energy Charged (kWh) 763 939 776 789 1145
User Satisfaction (%) 83.8 92.1 84.9 85.3 100.0
Reward 233 409 448 433 -

Table 5.6: Agent performance for π = 1.0

5.2.1. Flexibility multiplier analysis

Continuing the analysis on the user satisfaction, Figure 5.1 shows the effects that the flex-
ibility multiplier π has on this metric. It can be seen introducing the flexibility multiplier
π results in overall higher user satisfaction (especially for π = 0.1) as the agent has more
incentive to charge the EV when electricity prices are lower and does not charge when
they are high, as this will generate income in the form of flexibility reward. However,
when considering values for π ≥ 0.5, the user satisfaction metric is much worse although
the profits (and reward) given to the agent is higher. In these scenarios, agents found
that the best strategy is to charge the EV to just 85% not to be penalized according to
(4.3) and maximize the passive reward given by the flexibility. This behavior can also be
explained by looking at the mean metrics for RL agents (excluding MPC) in Figure 5.2,
in which upwards flexibility and profits are considerably higher for π = 1.0 while energy
cost and user satisfaction are lower.

From said figure, one can also see that while higher values of π increase the upwards
flexibility, they also decrease the downwards flexibility, which may seem counter-intuitive
at first. From its definition in equation (2.14) one can see that while charging the EV, this



5| Experimental results 49

flexibility is equal to the power provided by the charger. Meaning that, as the strategies
for agents with higher values of π do not charge the EVs as much, the chargers provide
less power and thus the downward flexibility is considerably lower. This also explains
why the downwards flexibility is equal when considering any value of π for the MPC, as
this metric is bounded by the energy that the charger can supply, which is equal to fully
charging all EVs.

Figure 5.1: User satisfaction and Profits for RL agents depending on flexibility multiplier
π

5.2.2. RL agent comparison

Once the analysis with respect to the flexibility multiplier is finished, a comparison be-
tween the different RL methods shall be done. For simplicity, this analysis will only
include agents trained with values of π = [0.1, 0.3, 0.5] as other values resulted in strate-
gies that maximized the reward by not charging the EVs, so they can be discarded from
the analysis.
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Figure 5.2: Mean performance for RL agents across different values of π

Figure 5.3: RL agents performance metrics for π = 0.1
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Figure 5.4: RL agents performance metrics for π = 0.3

Figure 5.5: RL agents performance metrics for π = 0.5

From Figures 5.3, 5.4 and 5.5, one can see that agents have developed different strategies
to maximize reward. DDPG and TD3 took a strategy that charges the EVs at an ac-
ceptable range and thus obtains a higher downward flexibility. On the other hand, PPO
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and TRPO performed much better in their main objective (maximizing reward) by not
fully charging the EVs and thus spending less on energy and obtaining higher values for
upwards flexibility.

Although according to the reward function, the best performing agents should be PPO
and TRPO, for the purposes of this thesis DDPG and TD3 are chosen as they developed
better charging strategies considering that almost all EVs arrived to the desired SoC as
can be seen in Figure 5.6. Also, it is worth comparing the power profiles of said agents in
Figure 5.7, where one can see that while DDPG follows a reasonable control strategy to
charge the EVs when electricity prices are low, PPO and TRPO use a bang-bang type of
control strategy, which is undesired as this can cause negative effects on battery health.

Figure 5.6: SoC evolution of different agents during plotting episode considering π = 0.3



5| Experimental results 53

Figure 5.7: Power profile of different agents during plotting episode considering π = 0.3

5.2.3. RL agents vs. MPC

Now that the analysis has been narrowed down to a couple of agents, a more in-depth
comparison can be achieved between RL methods and MPC. This part of the analysis
will cover the overall metrics obtained by the agents, while section 5.3 will compare the
power profiles of the agents.

The metrics for the final RL agents (DDPG and TD3) along with the MPC have been
aggregated in Table 5.7, which has been used to construct Figure 5.8 . Overall, MPC
consistently outperformed RL methods across all performance metrics. Which makes
sense considering that MPC is solving a minimization problem and taking full advantage
of the model’s dynamics at each time step. In these cases where the full model is available,
it is expected that using a model-free method such as RL will yield worst results.
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π Agent Profits
(e)

Energy
Cost
(e)

Up
Flexibility

(kWh)

Down
Flexibility

(kWh)

User
Satisfaction

(%)

0.0
DDPG -203 -203 1875 885 93,1
TD3 -213 -213 1737 933 94,8
MPC -217 -217 2836 1144 100,0

0.1
DDPG -166 -223 1702 984 97,8
TD3 -173 -228 1597 1001 98,6
MPC -133 -224 3224 1144 100,0

0.3
DDPG -33 -218 1964 951 96,5
TD3 -23 -216 2084 952 96,6
MPC 49 -224 3227 1144 100,0

0.5
DDPG 148 -204 2440 894 94,1
TD3 109 -215 2115 953 96,8
MPC 231 -224 3228 1144 100,0

1.0
DDPG 625 -157 3014 693 83,8
TD3 512 -194 2508 844 92,1
MPC 715 -239 3418 1144 100,0

Table 5.7: Final RL agents and MPC metrics

As said previously, using a higher flexibility multiplier results in higher upwards flexibility
for RL agents. However, it is curious to see that this multiplier does not affect the MPC as
much when examining the upwards flexibility. The reasoning behind this will be explained
in the next section, where the power profiles of the charging strategies will be examined.

5.3. Episode Analysis

In this section, the charging strategies of the final RL methods will be analyzed and com-
pared with the MPC. For this purpose, a random episode from the evaluation set was
chosen and one charger station with three events was selected for plotting. Figure 5.9
shows the different power profiles when there is no flexibility reward, showing that all the
methods use a coherent charging strategy in which the EV is charged when the electricity
prices are low. However, it can be seen that MPC has no problem charging at maximum
power when the lowest price is available, while RL methods may not choose those instants.

As said before, it is surprising to see how little effect the flexibility multiplier has on the
upwards flexibility (Figure 5.8). But by looking at the specific power profile in Figure 5.9
it can easily be explained. Although in this case the eMPC is not taking into consider-
ation the flexibility, it is being maximized as the charger is waiting until the EV has to
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depart, which coincides with the time at which the price is minimum. When the episode
is repeated using a different and flatter price range, the eMPC just charge whenever the
electricity prices are lower and thus a lower flexibility is obtained, as can be seen in Figure
5.14. In fact, here one can see that the optimal strategy to maximize flexibility is to charge
the EV at a constant power such that the charger remains upward and downward flexible
throughout the entirety of the parking time, without any consideration with respect to
the price of electricity.

Once the flexibility multiplier is introduced, the behavior of the RL agents starts changing
as can be seen in Figure 5.10, as both DDPG and TD3 start to make more clear decisions
on when to charge the EV. However, the timing is not perfect as they are not choosing
the moments in which electricity prices are lower.

A major improvement can be seen when the flexibility multiplier is set to π = 0.5, as
Figure 5.12 shows that both RL agents are charging when electricity prices are lower and
thus they maximize flexibility by chairing only at said instants. Nevertheless, a binary
control strategy starts to appear.

Finally, the power profile from Figure 5.13 gives mixed results. On one hand, one can see
that TD3 is following a good strategy as it charges just before departure (when electricity
prices are lower) and thus provides more flexibility. The charging profile of the TD3
agent resembles the one taken by the eMPC in Figure 5.9. On the other hand, the user
satisfaction for both DDPG and TD3 has dropped drastically. In fact, for this specific
station, none of the EVs have been charged by the DDPG agent, although from table 5.7
one can see that the mean user satisfaction over all chargers and episodes for the DDPG
is still 84%.
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Figure 5.8: Metrics of DDPG, TD3 and MPC across different flexibility multipliers π.
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Figure 5.9: Power profile comparison for π = 0.0.

Figure 5.10: Power profile comparison for π = 0.1.
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Figure 5.11: Power profile comparison for π = 0.3.

Figure 5.12: Power profile comparison for π = 0.5.
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Figure 5.13: Power profile comparison for π = 1.0.

Figure 5.14: Power profile comparison considering MPC with π = [0.0, 0.5, 0.1].
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6| Conclusions and Future work

Throughout this thesis, the framework to apply RL methods for the EV charging problem
has been developed. And thanks to this, it has been proven that a wide variety of RL
methods can be used to manage an aggregator to minimize cost while maximizing upwards
and downwards flexibilities. However, the final behavior of the agent will not depend as
much on its architecture, but on the reward function on which the agent is trained. This
is based on the fact that none of the agents chose to charge the EVs to 100% as the reward
for doing so is too weak, and when considering higher profits from flexibilities, this metric
drops even further, suggesting that the penalization for not charging shall be scaled with
respect to the flexibility multiplier.

When comparing the results of the DDPG and TD3 agents with respect to MPC, it can
be concluded that MPC outperforms RL methods when minimizing cost and maximizing
flexibility. This is not surprising as when dealing with a simpler problem from which one
can develop a plant model, using a method that solves a minimization problem at each
iteration will always deliver best results. However, the results delivered by RL are still
acceptable and, as such, these methods shall be considered for cases in which flexibility
maximization is required but forecasted data is not accurate or available.

To continue the development of RL solutions for flexibility maximization, first it shall be
proven that using RL in more complex and real scenarios could result in better perfor-
mance. This means that agents should be trained without future knowledge of parking
times and-or electricity prices so that they develop policies that could predict said values
based on past inputs and current time of the day (also depending on the day of the week).
In this case, MPC can also be applied but it would require building a NARMA predictor
to estimate said parameters. This is a sufficiently complex scenario to truly justify the
use of RL.

When constructing this problem, a lot of trial and error would be required to develop
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the final reward function. A good starting point would be to take the user satisfaction
reward used this thesis but amplifying the reward obtained when charging above 95% to
encourage agents to fully charge the EVs and scale the penalization with respect to the
flexibility multiplier. Another term should be added to the reward to penalize abrupt
changes in power output to discourage the agent into following a binary or bang-bang
strategy.

Finally, if the agent should develop strategies without information about parking time
and electricity prices, the neural network should be enlarged to develop better function
approximation. And due to the momentum that the field of RL currently has, the simu-
lator can be used without any major modifications on techniques that appear in the next
years.
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